Health and growth status of immigrant and refugee children in Toronto, Ontario: A retrospective chart review

Leila Salehi MD MPH1,2, Aisha K Lofters MD PhD3,4, Susan M Hoffmann MD7, Jane Y Polsky MSc5,6, Katherine D Rouleau MD1

OBJECTIVE: To describe select anthropometric and health status variables among immigrant and refugee children ≤6 years of age within an inner city clinic in Toronto, Ontario.

METHODS: A retrospective chart review of patients born between January 1, 1998 and December 31, 2008, was conducted at a Toronto community health centre serving a primarily immigrant and refugee population. Outcome measures included calculated age-specific percentiles for height and weight, and the prevalence of anemia, iron deficiency, enteric parasites, elevated lead levels, HIV and hepatitis B.

RESULTS: A total of 331 patients, born between January 1, 1998 and December 31, 2008, were identified. Of these, a total of 210 charts were manually reviewed. The prevalence of height-for-age and weight-for-age under the third percentile on the Centers for Disease Control and Prevention Growth Charts were 7.2% and 11.6%, respectively, and 8.4% and 5.0%, respectively, on the WHO Growth Standards Chart. Prevalence rates were also calculated for anemia (22.8%), iron deficiency (53.3%), hepatitis B (2.5%), parasitic infections (33.6%), elevated blood lead levels (4.9%) and HIV (0%). Neighbourhood income quintiles revealed that 46.7% of patients were residing in the lowest (ie, poorest) income quintile neighbourhoods.

CONCLUSION: These findings reveal a high burden of illness within the population presenting to an immigrant/refugee health clinic, and illustrate the need for further research in this area, as well as increased efforts to ensure appropriate screening within clinics serving a high volume of newcomer patients.

Key Words: Canada; Child; Emigrants; Health; Immigrants; Refugees
as well as targeted serological testing for hepatitis B and intestinal parasites (specifically *Strongyloides* and *Schistosoma*) among individuals coming from countries with a high prevalence (10). Both the American Academy of Pediatrics and the Canadian Paediatric Society have developed guidelines and tools, which address the unique disease profiles within foreign-born children, and recommend targeted screening for health and developmental issues (15,16,17).

Within Canada, very few studies have examined the prevalence of general health issues and infectious diseases, specifically among school- and preschool-age immigrant and refugee children. Two studies involving immigrant children in Canada revealed a greater risk for vitamin D deficiency (7,18). A mixed-methods qualitative study involving refugee mothers described multiple barriers (including cost) to seeking health care and health services for their children (19). A study involving routine HIV screening for paediatric patients applying for residency in Canada revealed that between January 2002 and February 2005, 36 paediatric HIV cases were reported (14 of 100,000 applicants) (20).

The goal of the present study was to add to the current literature on the immigrant and refugee paediatric populations in Canada, by describing select anthropometric and health status variables among foreign-born children ≤6 years of age, within a clinic serving a high volume of newcomer patients. This age group was chosen for several reasons. First, as discussed previously, few Canadian studies have focused on the health issues of immigrant and refugee children. Second, health and growth in the first few years has a significant impact on cognitive development and health outcomes later in life, and adequate screening and monitoring is, therefore, of utmost importance during this period. Finally, routine health maintenance visits are scheduled most frequently during this age interval, enabling improved identification of health and developmental issues.

METHODS

A retrospective chart review was performed at Access Alliance Multicultural Health and Community Services (AAMHCS; Toronto, Ontario). AAMHCS provides health and social services to newly arrived immigrants and refugees residing in Toronto, Ontario. During the five years preceding the data collection, AAMHCS’s patient population shifted to include more government-assisted refugees (GARs), refugee claimants as well as uninsured patients. A series of screening tests were offered to all the clinic’s newly-registered paediatric patients. Patients born between January 1, 1998 and December 31, 2008, were identified using the electronic patient database. Charts were manually reviewed for other inclusion criteria: not born in Canada; and ≤6 years of age on arrival to Canada. For patients who were >6 years of age at the time of chart review, data were only collected up to and including six years of age. Manual chart review was performed by one of the primary investigators (LS) and a research assistant using a standard data extraction sheet. All outlier values and positive screening tests were verified by both investigators to ensure validity and reliability of the results.

Demographic characteristics were collected for each chart, specifically, age, sex, date of birth, date of arrival in Canada and country of origin. Data were also collected and recorded on anthropometric measurements, specifically, first recorded height and weight obtained by the clinical staff (nurses, nurse practitioners and physicians) during the child’s initial clinic visit. Percentiles for height and weight were determined using the age- and sex-appropriate Centers for Disease Control and Prevention (CDC; Georgia, USA) Clinical Growth Charts. Prevalences were calculated for children who fell below the third percentile threshold for age-specific height and weight. The third percentile mark was selected due to its significance in the clinical setting as a trigger for investigation of potential growth abnormalities. Following completion of the study, subgroup analysis (using the WHO Anthro for PC software [WHO, Switzerland]) was performed to determine the prevalence of age-specific height and weight abnormalities, determined by the WHO Child Growth Standards (using a cut-off z-score of ≤−2, which indicates a percentile measurement of approximately ≤2.3). Data were also collected on the presence of: iron deficiency (defined as ferritin levels below the age-specific laboratory lower reference limits); anemia (defined as hemoglobin levels below the age-specific laboratory lower reference limits); parasitic enteric infections (positive stool culture for ova and parasites); hepatitis B (positive hepatitis B surface antigen levels); HIV (positive ELISA test); and elevated lead levels (lead levels ≥0.48 μmol/L).

Postal codes were also collected and used to determine the patient’s neighbourhood income quintile. Income quintiles divided the population into five groups based on the calculated average household income within each neighbourhood. Neighbourhoods were categorized from least affluent (Q1) to most affluent (Q5). Using Statistics Canada’s Postal Code Conversion File Plus, individual postal codes were converted into neighbourhood income quintiles as a proxy for household income quintile.

Summary statistical analyses were conducted using Excel (Microsoft Corporation, USA).

Ethics approval was obtained from St Michael’s Hospital’s Research Ethics Board (Toronto, Ontario).

RESULTS

A total of 331 patients, born between January 1, 1998 and December 31, 2008, were identified. Of these, 41 charts were unable to be located. Eighty charts were excluded because the patients were either born in Canada or were >6 years of age on arrival to Canada. A total of 210 charts were manually reviewed.

The study population consisted of 91 (43.3%) females and 119 (56.7%) males. Ages on arrival ranged from two months to six years 10 months. Some countries of origin were over-represented within the clinic sample, specifically Afghanistan (n=30), Myanmar (n=21) and Colombia (n=19). With respect to the distribution of neighbourhood income quintiles among the study population, nearly one-half of the population (46.7%) was residing in the lowest income quintile neighbourhoods. Full demographic data are summarized in Table 1.

Of the 167 subjects with documented height measurements, 7.2% (n=12) fell below the third percentile within the CDC Growth Charts. Of the 180 subjects with documented weight measurements, 11.6% (n=21) fell below the third percentile. Children from Afghanistan and Myanmar were heavily over-represented among those who fell below the third percentile for both height and weight. Using the WHO Growth Standards, the prevalence of height abnormalities was 8.4% (n=14) and prevalence of weight abnormalities was 5.0% (n=9).

Table 2 summarizes the results of the screening tests among the study population. Given the small and variable sample sizes of children from each country, only observations on the regional prevalence of each outcome were made. Among the 49 children testing positive for iron deficiency, 10 were from Myanmar and 11 were from Afghanistan. Of the 122 patients who submitted stool samples for testing of ova and parasites, 41 children provided 53 positive samples (10 subjects had ≥1 positive stool sample). Of these, 7.5% (n=4) were *Dientamoeba histolytica*, 37.7% (n=20) *Giardia lamblia*, 28.3% (n=15) *Dientamoeba fragilis*, 15.1% (n=8)
A high prevalence of intestinal parasites and hepatitis B was found in the present study population. The higher rate of hepatitis B surface antigen positivity among clinic sample children suggests that targeted screening of high-risk populations is recommended.

We found a high prevalence of iron deficiency and anemia within the clinic sample. The prevalence of anemia within Canada has been estimated to be 4% to 5% among non-Aboriginal children, but present in up to 46% to 66% of children <4 years of age in low- and middle-income countries (22,23). Iron deficiency and anemia in childhood may have significant and long-lasting effects on neurodevelopment and behaviour. Therefore, the Canadian Paediatric Society, the American Academy of Pediatrics and The Canadian Collaboration for Immigration and Refugee Health all recommend screening for anemia in infancy and early childhood, particularly for ‘high-risk’ children (10,16,24).

TABLE 1
Baseline characteristics of clinic sample

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>210</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>119 (56.7)</td>
</tr>
<tr>
<td>Female</td>
<td>91 (43.3)</td>
</tr>
<tr>
<td>Age at arrival, years</td>
<td></td>
</tr>
<tr>
<td>Median, n</td>
<td>2.67</td>
</tr>
<tr>
<td>Mean, n</td>
<td>2.87</td>
</tr>
<tr>
<td>N/A*, n</td>
<td>10</td>
</tr>
<tr>
<td>Time since arrival, months</td>
<td></td>
</tr>
<tr>
<td>Median, n</td>
<td>1</td>
</tr>
<tr>
<td>Mean, n</td>
<td>4.8</td>
</tr>
<tr>
<td>Region of origin</td>
<td></td>
</tr>
<tr>
<td>Middle East, Central Asia†</td>
<td>57 (27.1)</td>
</tr>
<tr>
<td>Latin America and the Caribbean‡</td>
<td>48 (22.9)</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>43 (20.5)</td>
</tr>
<tr>
<td>South East Asia§</td>
<td>26 (12.4)</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>18 (8.6)</td>
</tr>
<tr>
<td>Western Europe</td>
<td>10 (4.8)</td>
</tr>
<tr>
<td>Indian sub-Continent</td>
<td>6 (2.9)</td>
</tr>
<tr>
<td>United States</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Income quintile</td>
<td></td>
</tr>
<tr>
<td>1st (lowest)</td>
<td>98 (46.7)</td>
</tr>
<tr>
<td>2nd</td>
<td>43 (20.5)</td>
</tr>
<tr>
<td>3rd</td>
<td>43 (20.5)</td>
</tr>
<tr>
<td>4th</td>
<td>13 (6.2)</td>
</tr>
<tr>
<td>5th (highest)</td>
<td>3 (1.4)</td>
</tr>
<tr>
<td>Missing data</td>
<td>10 (4.8)</td>
</tr>
<tr>
<td>Total</td>
<td>210</td>
</tr>
</tbody>
</table>

Data presented as n (%) unless otherwise indicated. *N/A indicates data not available, ie, this information was not collected or did not appear in the clinic chart; †30 of 57 children in this category were from Afghanistan; ‡19 of 48 children in this category were from Colombia; §121 children within this category were from Myanmar.

TABLE 2
Results of routine screening tests among clinic sample

<table>
<thead>
<tr>
<th>Test</th>
<th>Total, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td></td>
</tr>
<tr>
<td>Present*</td>
<td>33 (22.8)</td>
</tr>
<tr>
<td>Absent</td>
<td>112 (77.2)</td>
</tr>
<tr>
<td>N/A, n</td>
<td>65</td>
</tr>
<tr>
<td>Low ferritin</td>
<td></td>
</tr>
<tr>
<td>Present†</td>
<td>49 (53.3)</td>
</tr>
<tr>
<td>Absent</td>
<td>43 (48.7)</td>
</tr>
<tr>
<td>N/A, n</td>
<td>118</td>
</tr>
<tr>
<td>Parasitic infections</td>
<td></td>
</tr>
<tr>
<td>Present‡</td>
<td>41 (33.6)</td>
</tr>
<tr>
<td>Absent</td>
<td>81 (66.4)</td>
</tr>
<tr>
<td>N/A, n</td>
<td>88</td>
</tr>
<tr>
<td>Hepatitis B surface antigen</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>3 (2.5)</td>
</tr>
<tr>
<td>Negative</td>
<td>119 (97.5)</td>
</tr>
<tr>
<td>N/A, n</td>
<td>88</td>
</tr>
<tr>
<td>Lead levels</td>
<td></td>
</tr>
<tr>
<td>Above limits</td>
<td>4 (4.9)</td>
</tr>
<tr>
<td>Below limits</td>
<td>77 (95.1)</td>
</tr>
<tr>
<td>N/A, n</td>
<td>129</td>
</tr>
<tr>
<td>HIV</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Negative</td>
<td>101 (100.0)</td>
</tr>
<tr>
<td>N/A, n</td>
<td>109</td>
</tr>
</tbody>
</table>

Data presented as n (%) unless otherwise indicated. *Value falls below the lower reference limit for hemoglobin concentration; †Value falls below the lower reference limit for ferritin concentration; ‡Intestinal parasite found on stool ova and parasite sample. For optimal sensitivity, three sets of stool samples are recommended. N/A Not available.

DISCUSSION

Our study revealed a high proportion of height and weight measurements falling under the third percentile within the present clinic population. A study by Geltman et al (4) revealed a similar prevalence of anthropometric abnormalities (using the CDC Growth Chart) in a study involving 1825 refugee children in Massachusetts, USA. However, the prevalence of abnormal weight measurements within our clinic sample became lower, while that of abnormal height measurements became higher when using the WHO Growth Standards. These findings are consistent with previous observations, demonstrating that for the same population, when compared with the CDC Growth Charts, the WHO Growth Standards reveal lower rates of underweight and wasting, and higher rates of stunting (21). While our sample size was too small to allow for conclusive determinations, our results suggest that abnormal or unhealthy growth may be an issue of concern for certain subgroups of newcomer children, although prevalence rates – particularly of underweight or wasting – may be overestimated if using the CDC Growth Charts.

Ascaris lumbricoides, 3.8% (n=2) Enterobius vermicularis, 4.0% (n=2) Hymenolepis nana, 1.9% (n=1) Cyclospora cayetaneae and 1.9% (n=1) Strongyloides stercoralis. Positive stool samples were found primarily among children from Afghanistan, Myanmar and Sub-Saharan Africa.

We found a high prevalence of iron deficiency and anemia within the clinic sample. The prevalence of anemia within Canada has been estimated to be 4% to 5% among non-Aboriginal children, but present in up to 46% to 66% of children <4 years of age in low- and middle-income countries (22,23). Iron deficiency and anemia in childhood may have significant and long-lasting effects on neurodevelopment and behaviour. Therefore, the Canadian Paediatric Society, the American Academy of Pediatrics and The Canadian Collaboration for Immigration and Refugee Health all recommend screening for anemia in infancy and early childhood, particularly for ‘high-risk’ children (10,16,24).

We also found a high prevalence of elevated blood lead levels (BLL) in the clinic population. Studies from the United States (US) involving newly-arrived refugee children, similarly demonstrate higher rates of elevated BLL within this population (9,25). There is no representative nationwide picture of current BLL in Canadian children, although US national screening data reveal a prevalence of elevated BLL (≥10 μg/dL) of 0.8% among children one to five years of age (26). Children <6 years of age are at greater risk for exposure to lead due to crawling and hand-to-mouth behaviour, and more susceptible to the toxic effects of lead due to an incomplete blood-brain barrier and active neurodevelopment in the first years of life. The US CDC has a number of explicit guidelines with respect to lead screening in newly-arrived refugee children (25). Within Canada, although universal BLL screening in children has never been supported, targeted screening of high-risk paediatric populations has been endorsed (27).

A high prevalence of intestinal parasites and hepatitis B was found in the present study population. The higher rate of hepatitis B surface antigen positivity among clinic sample children suggests that targeted screening of high-risk populations is recommended.
B is likely due to increased prevalence, and lack of access to child-
hood immunization and prenatal screening in the childrens’ home
countries. Intestinal parasites were found particularly in children
from Myanmar, Sub-Saharan Africa and Afghanistan. Since 1997,
the CDC has released and updated recommendations on overseas
presumptive treatment of various intestinal parasites for US-bound
refugees from parts of Latin America, the Caribbean Islands, Asia,
the Middle East and Africa (28). No such guidelines exist for refu-
gees accepted for migration to Canada.

Several limitations exist in the present study. First are the lim-
itations inherent to chart reviews, including: incomplete charting,
failure to locate all charts, and potential human error in measuring
and recording clinical data at the time of the clinical assessment,
as well as in the data entry process. Second, routine screening tests
were not performed for all patients. Although the clinic offers test-
ing to all new patients, the lack of uptake by some has likely intro-
duced a certain degree of bias into our results. Third, we did not
have access to reliable data regarding the immigration status (ie,
refugee claimant versus GAR versus landed immigrant) of the
patients at the time of their initial clinic visit and were, therefore,
not able to perform analysis of outcomes as a function of newcomer
category. Fourth, we only recorded one measurement for height
and weight, as opposed to several measurements over time.
Therefore, the growth abnormalities do not fit the definition of
‘failure to thrive’. Fifth, several outcomes collected were based on
screening tests (as opposed to diagnostic tests). Of note, stool ova
and parasite testing has low sensitivity for several enteric parasites,
particularly if only one or two samples are submitted, as was the
case in our study. Therefore, our outcome measures likely under-
estimated the true prevalence of enteric parasites within the
present clinic sample, particularly among children from countries
of origin with a high prevalence. Finally, the present study com-
promises data from a small convenient sample of children within
one clinical setting serving a high volume of newcomer immi-
igrants and refugees and, therefore, may not be representative of
the general population of foreign-born children within Toronto or
within Canada.

Immigrants and refugees are a very heterogeneous group with
different countries of origin, educational levels and socioeconomic
status. There is a paucity of systematic data regarding the distinct
health issues and risk profiles for various categories of foreign-born
children. Economic and family class immigrants differ greatly in
terms of various socioeconomic status variables from refugees (2,29).
Various authors have identified a ‘healthy immigrant’ effect – largely
among economic and family class immigrants – which is likely a
reflection of the health requirements of the immigrant selection
program and premigration medical examination. Conversely, refu-
gee-class immigrants have been demonstrated to have a poorer
health status (10,29,30).

During the timeline covered by the present study, there was a
shift in AAMCHS’s patient population to include a far greater
number of GARs and refugee claimants, particularly those belong-
ing to waves of refugees coming to Canada from certain countries
during that time. Some of the above discussed variability in health
status as a function of newcomer category was observed within the
study results, in the form of a disproportionately high burden of
illness among children from certain countries and regions of ori-
 gin. Therefore, the findings from the present study cannot be
applied to all foreign-born children, because they likely underesti-
mate the burden of disease for some and overestimate for others.
Variations in health status within different categories of newcom-
ers and foreign-born children is an area in need of further research.

CONCLUSION

The findings of the present study reveal a high burden of disease
and low socioeconomic status among immigrant and refugee chil-
dren, particularly those from Afghanistan, Sub-Saharan Africa
and certain parts of Southeast Asia. These findings highlight the
need for more research examining health issues specific to this
particularly vulnerable patient population, as well as increased
efforts to ensure access to appropriate targeted screening and
health care services to foreign-born children, particularly those
observed within clinics serving a high volume of immigrant and
refugee patients.

ACKNOWLEDGEMENTS: The authors thank Dr Khaled Aryanfar,
Dr Yogendra Shakya, Ms Marisa Creatore and Dr Peter Muennig for
their contributions to the manuscript. Dr Aisha Lofters is supported by
a Canadian Cancer Society Research Institute Career Development
Award in Cancer Prevention.

INSTITUTIONAL SUPPORT: Support was provided by the
University of Toronto, Department of Family and Community Medicine
(Toronto, Ontario).

DISCLOSURES: The authors do not have any external funding,
financial relationships or conflict of interest to declare.

REFERENCES

1. Statistics Canada: National Household Survey: Immigration and
Ethnocultural Diversity in Canada. 2013. <www12.statcan.gc.ca/
and related medical conditions among refugee children in
5. Leventhal T, Brooks-Gunn J, Xue Y. Immigrant differences in
school-age children’s verbal trajectories: A look at four racial/ethnic
health needs of refugee children with services: How big is the gap?
7. Aucoin M, Weaver R, Thomas R, Jones L. Vitamin D status of
refugees arriving in Canada: findings from the Calgary Refugee
health clinic in Western Australia: Analysis of the first 1026
11. To T, Guttmann A, Dick PT, et al. What factors are associated with
poor developmental attainment in young Canadian children?
12. Seguin L, Xu Q, Potvin L, Maria-Victoria Z, Frohlich KL. Effects of
13. Quintana SM, Chao RK, Cross WE, Jr, et al: Race, ethnicity, and
related medical conditions among refugee children in
status and cognitive development in the first year of life.
15. American Academy of Pediatrics: Providing care for immigrant,